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Introduction:
Let A4 be a Banach algebra and let X be a
Banach A- bimodule, in particular for X =
A* is a Banach A- bimodule, which is called
the dual module of A , and also A™ is a unit-
linked bimodule when A is unital.

In their article [2], H. G. Dales and J. Duncan
established some nice results about
H2(A,X), where A =+LS), the
semigroup algebra of S for some certain
semigroups S such as S = Z, . Indeed, it was
proved that 7 2(A,A*) ={0} for A=
£1(S)where S = Z,.

In [3], F. Gourdeau, A. Pourabbas, and M.
White  investigated the  second-order
cohomology group of certain semigroup
algebras. They proved that
H21(SYH,21(SH)*) is a Banach space
whenever St is any Rees semigroup with
identity adjoined.

Let S be the semigroup T, =
{e,a,a?, ...,a" 1,a" =0} for n €N with
n = 2. We use e for the identity of S We note
that T, is finite, commutative, 0-cancellative,
nil #-semigroup which was introduced in [4].

From now on we fix the notation A,, for the
semigroup algebra £ 1(T;,). In this paper we
shall  reformulate the second order
cohomology and cyclic cohomology groups
H 2(Ap,Ar) and HC ?(A,,A;) for the
semigroup algebra A,,.

In the next three sections, we recommend the
reader to follow [1] for more information.

2 Cohomology of algebras

Let A be an algebra, and let X be an A-
bimodule. For n € N, recall that an n-linear
map T:A™ — X is an n-cochain and that
L™(A, X) is the space of n-linear maps from
AX--XA0X.

Definition 2.1 Let n € N. We define the map
S™MLM(A,X) = LA, X) by the
formula

(6"T)(ay, ) Any1) = a1 - T(az, ., Any1)

n
+ Z (=D*T(ay, -, Gr—1, Qg 1, Ans1)
k=1

+(_1)n+1T(a1, ey an) * an+1 )
2.1)

where aq,...,a,41 €A and T € L™(A,X) .
We also define § : X - L(A, X) by § °(x) =
5, (x€X).

Take n € N. Clearly § "T € L"*1(A, X) for
each T € L™(A,X) and each § ™ is linear. It
can be seen by a tedious calculations that
§™1o§™ =0foralln € N. Ann-cochain T
is an n-cocycle if §"T =0, and T is an n-
coboundary if there is a linear map Q €
L™ 1(A,X)suchthatT = § *1Q. The linear
space of all n-cocycles is denoted by
Z™(A,X), and the linear space of all n-
coboundaries is denoted by N (A, X). Since
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§"os™ =0 for all n€N, the space
N ™(A, X) is a subspace of Z (A, X).

Definition 2.2 The nt"-cohomology group of
A with coefficients in X is defined by

H™(A,X) =Z"(A,X)/N"(A,X).
In the additional case where n = 0, we set

Z%A,X)=kers?°
={xeXia-x=x-a (a
€ A)}

and H°(A,X) =Z°(A,X) .

Given T € Z™(A,X), we shall sometimes
write [T] for the element of H™(A,X)
determined by T .

For example, a linear map D € L(A,X) is 1-
cocycle if and only if it is a derivation and a 1-
coboundary if and only if it is inner.

A map T € L%(A,X) is a 2-cocycle if and
only if it satisfies the equation

a-T(b,c)—T(ab,c)+ T(a,bc) —
T(a,b)-c=0 (abceA).(2.2)

Now take amap Q € L(A,X) . Then

(61 y) =x- Q) —Q(xy) +
Q) -y (xy€eA), (23

Clearly § 1Q € L?(A, X) . Each such bilinear
map & 1Q is easily checked to be a 2-cocycle.

3 Cohomology of Banach algebras

Let A be a Banach algebra, and let X be a
Banach A-bimodule. For T € B™(A, X), we
have ST € B (A, X) and
5™ B™(A, X) » B"1(A, X) is acontinuous
linear map.

An n-cochain T is a continuous n-coboundary
if there is a bounded linear map Q €
B™(A,X) such that T =6"Q. The linear
space of all continuous n-cocycles is denoted
by Z™(A,X), and linear space of all
continuous n-coboundaries is denoted by
N (A, X). Clearly Z™(A,X) is a closed
subspace of B™(A,X) and NV ™"(A,X) is a
subspace of Z ™(A, X) ; it is not necessarily
closed.

Definition 3.1 Let A be a Banach algebra,
and let X be a Banach A-bimodule. Then the
nt"-cohomology group of A with coefficients
in X is defined by

H (A X) = Z (A X)/N (A X).

The space H ™ (A, X) is a semi-normed space
for the quotient seminorm; it is a Banach space
whenever NV (A, X) is closed in B™(A, X).

Definition 3.2 Let A be a Banach algebra. A
trace on A is an element T of A* such that
T(ab) = T(ba) for all a,b € A. The set of
all traces on A is denoted by A*".

We set

HOAX)=ker§°={x€X:a-x=x"
a (aeA)}.

It is clear that

HO(A,A*) = A" (3.1)

Remark 3.3 We recall another notation: we
define

N2(A,X) = N2(A,X) N Z2(A,X),
and then we define
H2(A,X) = Z2%(A,X)/N 2(A,X) .

Thus H?2(A,X) = {0} means that, for each
T €Z2%(A,X) , there exists Q € L(A,X),
not necessarily continuous, such that T =
51Q, whereas 7 ?(A, X) = {0} means that,
for each T € Z2(A,X) there exists a
continuous linear map Q € B(A, X) such that

T=6Q. In contrast, H2(A, X) = {0}
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means that, given T € Z 2(A, X) , there exists
a linear map Q € L(A,X) such that T =
5 1Q . In fact the vanishing of the continuous
second-order cohomology implies that
I-TZ(CA,X) ={0}. In our initial cases, our
algebra A will be finite-dimensional, so that
there is no difference between H 2(A,X),
H 2(A,X), and H2(A, X) .

4 Cyclic cohomology of Banach algebras
Let A be a Banach algebra, and let A* be its
dual bimodule. Take n € N . An n-cochain
T € B™"(A,A") is cyclic if it satisfies the
equation:

T(aq,...,ay)(ag) =
(=D"T(ag, ay, -, an-1)(an) (4.1)

whenever a,, a4, ..., a, € A.

For example, a linear map T: A — A* is
cyclic if T(b)(a) = (—1)T(a)(b) for all
a,b € A ; in other words,

(a,T(b))+(b,T(a))=0 (abe
A). (4.2

In particular,

(a,T(a))=0 (aeA), (43

and this condition is sufficient to ensure that T
is cyclic.

A bounded bilinear 2-cochain T: A X A —
A" is cyclic if

(a,T(b,c)) =(c,T(a,b)) (a,b,cE€
A). (4.4)

The linear space of all cyclic n-cochains is
denoted by CC™(A) for n > 1, and we set
CCO(A) = A*.

It can be seen that the map 6 ™ maps a cyclic
n-cochain to a cyclic one for n > 0 (see for
example page 450 in [5]), so that the cyclic n-
cochains ¢C ™((A),5 ™) form a subcomplex

of B™"((A,A"),6™) and the differentials of
this complex or its coboundaries are denoted

by

Sc™ CCM(A) - CC1(A)
forn>0.
Definition 4.1

The space of all bounded, cyclic n-cocycles is
denoted by ZC ™(A,A"), and the subspace
consisting of maps 6 1Q , where Q is a
bounded, cyclic (n — 1)-cocycle, is denoted
by V'€ ™(A,A*) . Then the continuous nt"-
cyclic cohomology group is defined by

HC (A, A*) = ZC (A, A")
JNC (A, A).

We take HC (A, A*) to be H (A, A*) .
By (3.1) , we see that H'C (A, A*) = A,

In particular, the space of all bounded, cyclic
derivations from A to A* is denoted by
ZC (A, A", and the set of all cyclic inner
derivations from A to A™ is denoted by
NC (A, AY). It can be seen that every inner
derivation is cyclic, and so N'C (A, A*) =
N (A, A*). The first-order cyclic
cohomology group is defined by

HC YA, A" = ZC (A A"
JNC (A, A
=ZCYA,A)

JN (A, AY) .

Again, for example, to say that the second-
order cyclic cohomology, HC 2(A,A*) =
{0}, means that every bounded, cyclic 2-
cocycle bilinear map T: A X A — A" has the
form 5§ 1Q , where Q: A — A* is a bounded
linear map such that

(@,Q(@) =0 (aeA).

In the following example, we shall show that
H 2 (A, Ap) # {0}.

Example 4.2 Consider the semigroup T,, =
{e,a,a?, ..,a"1,a" = 0} . Again, set A,, =
£1(T,), so that A, = £ *(T,,).
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Take n =2 , and define the map T:A, X
Ay = A by

(621 T((Sx: 8y)> =
1 ifx=y=z=a
{0 otherwise. (4.5)

Then we claim that T is a 2-cocycle but not a
2-coboundary.

First the map T must satisfy the equation:

x-T(y,z)—T(xy,z) + T(x,yz) —
Tx,y)-z=0 (x,y,z€A). (4.6)

Since (64, T(84,0,))=1 , we see that
T(84,04) =04 and T(8,,64) =0 for all
other p,q € T, . We need to prove that

8, - T(8q,6r) — T(Bpq, 6) +
T(8p) 8qr) — T(6,,84) - 6, = 0 (4.7)

forallp,q,r €T,.

All four elements are zero unless at least one
of the pairs (¢,7) , (pq,7) , (p.qr) ,and (p, q)
is the pair (a, @) . Thus, there are four cases to
be discussed:

Casel: Supposethatq =r =a.The L. H. S.
of (4.7) will be equal to

8y - 85— T(Spar 8a) + T (8, 842)
—T(8p,84) 8z -

If p = e, the first two terms of (4.7) are 6, —
&, and the last are zero, so (4.7) is satisfied.

If p =a, the terms of (4.7) are ; — 0+ 0 —
6, , 50 (3.8) is satisfied. Lastly, ifp = a ore,
then all four terms are zero and (4.7) is
satisfied.

Case2: Suppose that pg =r = a but (g, 7) #
(a,a),sothatwehaveq = eandp = a . The
terms of (4.7) are 6; — 0+ 0 — 6, , and (4.7)
is satisfied.

Case3: Suppose that p=gqgr=a but
(pq,r) # (a,a) . Thenp=g=aandr =e
. The terms of (4.7) are 6; —0+0— 6, , so
(4.7) is satisfied.

Case4: If p = g = a, we can assume that r #
e or we are in Case3; all four terms of (4.7) are
zero unless r = a in which case we are back
to Casel. Thus T is a 2-cocycle map.

To prove that T is not a coboundary, suppose
that T = & 1Q for some bounded linear map
Q: A, = A5 . So from (4.5), we have

0=T(6,60,) =6 1Q(50:5o)

=6, - Q(6,) — Q(6,)

+ Q(5o) ' 50

=26, -Q(6,) — Q(8,) -
However, the map A5 — A3 such that y —
b, -y (sending 8, to 0 if x #0 , and 6, +
6, + 6, if x =0 ) does not have % as an
eigenvalue. The only solution of the equation
28, -Q(58,) =Q(6,) is Q(6,) =0 . Thus
Q(8,) =0.

Likewise,

0= T(5o'5a) = 51Q(60'5a)
=6, - Q(6q) — Q(8y)
+Q(8,) - 6o =8, - Q(6a) -

So 6,-Q(6,) =0 , in
(Q(aa)'6o> = (60 : Q(aa)'6o) =0

Finally we have

1 = (60_, T(6a: 60_)) = (6(11 6 1Q(6a' 6(1))
= (8q,8a - Q(8a) — Q(S0)
+Q(8a) - 8a)

= 2(60: Q(6a)) -
(6arQ(6o)> =0,
which is a contradiction. Thus T is not a 2-
coboundary.

particular

It is interesting to look at the case of this
example in general. We define the map
T:Ap X Ay = Ay by
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_(0 if@q #(aa)
T(8p,6q) = {5; otherwise.
(4.8)

Then we claim that T is a 2-cocycle but T is a
2-coboundary for n = 3.

The map T is a 2-cocycle because in the
following equation:

8y - T(8q,6) = T(8pq) 6) + T(8,,84r) —
T(6p8q) 6, =0 (p,qr€T,); (49)
(3.10)

we see that all four terms in (4.9) , are zero
unless at least one of the pairs (q,7) , (pq, 1)
, (p,qr) , and (p, q) is the pair (a,a) . Thus a
similar discussing for the above four cases
can be done to prove that T' is a 2-cocycle.

To see that T is a 2-coboundary, let’s seek a
map Q: A, > Aj suchthatT = §1Q .
From the equation (4.5) , we have
0=T(6,,6,) =6 10(60'60)
=0, - Q(6,) — Q(S,)

+ Q(So) ’ 60
=28, Q(8,) —Q(6,) -

However, the map A;, — A, such that y —
8o -y (sending 8y to 0 if x # 0 , and &, +
8; + 84 + -+ 6 n-1 if x = 0) does not have

% as an eigenvalue. The only solution of the

equation 26, - Q(8,) = Q(6,) isQ(6,) = 0.
Thus Q(5,) = 0.

Also we have

0= T(63; 53) = 59 : Q(5e) - Q(6e) +
Q(ae) : 59 = Q(ae) , SO Q(ae) =0.

Also we have

0=T(680,6q) =6, Q(6,) —Q(,) +
Q(ao) ' é‘a y S0 50 ) Q(Sa) =0.

Suppose that Q(6,) = Ag6s + 4164 + -+
Ap—18,n-1 .

We see that

8o =T (64q,64) =284 Q(6a) — Q(6,42)
= 2(&16; + 2.26;' + .-
+ Ap—164n-2) — Q(8,42),
hence
Q(642) = 2(M165 + 2205 + -+ An_lcS;n_z)
— 62

= 21,65 + (24, — 16,
+ o+ 240216 -2

Similarly, We see that

0=T(84,642) =04 Q(8,2) — Q(643)
+Q(8,) - 842

= (2/12 - 1)6: + 2/1362 + + ZAn_162n—3
—Q(643) + A0 + A36,5 + -+ + /1n_162n—3
hence

Q(643) = (BA, — 1)8; + 34364 + -+
+ 3An_162n—3 .

Also we see that
0= T(6a:5a3) = 6a ' Q(5a3) - Q(5a4)
+ Q(5a) : 5a3
= 3/1352 + 31452 + ce + 3111—152"-—4
—Q(844) + 238, + A48q + -+ Ay_16 n-s
hence
Q(844) = 4(A305 + 2464 + -
+ An_lcs;n—él) .

A pattern emerge, let’s look at the example
when n = 3 when we know that Q(5,3) =0
so we must have 4, = % andthemap T isa 2-
coboundary for any map Q:A; — Az such
that T=6%Q and Q(5,)=0Q(5,)=0 ,
* * 1 *
Q(6q) = Ap6e + 1164 + §6a2 ) Q(6az) =
2116; — 364 and Q(6,3) = 0 where Ao, A, €
C.

Therefore, the map T can not be a
counterexample whenn = 3.
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In general, by looking at Q(5,«) = 0 for all
k > 3, we must have that Q(6,) = 0 ; that is
nl,_16; =050 A4,_, =0sothatthe map T
is not a counterexample whenn > 3.

5 The main result

In this section we end with our main result,
where we shall reformulate the second order
cohomology and cyclic cohomology groups
H 2(Ap,Ar) and HC ?(Ay, A;) of the
commutative semigroup algebra A, as
defined above.

For n € N and from the definition of the map
6™ in (21), we form the map
S L:BY(A,, AL > B2(A,, Aj) such that
foreach T: A, = A,

we have

(6T)(a,b) = a-T(b) —T(ab) + T(a)
b (ab)€EA,.

Also, we form the map & 2: B2(A,, A;) —
B3(A,, A;) such that for each T:cA, X
A, = Ay, , we have

(62T)(a,b,c) =a-T(b,c) — T(ab,c)
+ T(a,bc) —T(a,b)
¢ (a,b,c)eA,.

It can be shown that 5281 = 0, so we can
reform the second order cohomology
H 2(A,, A3 as the following:

H2(A,, Ay) =ker§%2/ims?t.

The cyclic elements of the space
CC (A, A}) are the bounded linear maps
T: A, = A; such that

(b,T(a)) =—(a,T(b)) (a,beA,).

Also the cyclic elements of the space
CC ?(A,, A3, are the bounded bilinear maps
T: Ay X A, = Ay such that

(c,T(a,b)) =(a,T(b,c)) (ab,c€eA,).

The map 81 maps CC(A,,A;) into
CC2 (A, AL .

To see that, take T € CC (A, A}) , then for
eacha,b,c € A, , we have

(¢,T(a,b)) —(a,T(b,c))
={(c,a-T(b) — T(ab)
+T(a)-a)
—{a,b-T(c) —T(bc)
+T(b) - c)

= (ca,T(b)) —(c,T(ab)) + (bc,T(a))
—(ab,T(c)) +(a,T(bc))

—(ca, T (b))

= ((bc, T(a)) +(a, T (bc)))
— ({c, T(ab)) +{ab, T (c)))
=0.

Therefore, We can reform the second order
cyclic cohomology HC ?(A,,A}) as the
following:

HC2(A,, A = ker §2
N CC2(A,,AL)
/6 lee 1(cﬂn,o‘lfl)) .

Finally, we conclude with our main result as
presented in the following theorem:

Theorem 5.1 Let A, = £ (T,), where n >
2 . Then

H2(A, Ar) =ker§2/ims?t.
and

HC2(Ay, A = ker 52
N CC 2(A,, AL)
/8 (CC (A, AL)) .
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