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Introduction:    

Let 𝒜 be a Banach algebra and let X be a 

Banach 𝒜- bimodule,  in particular for 𝑋 =
𝒜∗ is a Banach 𝒜- bimodule, which is called 

the dual module of  𝒜 , and also 𝒜∗  is a unit-

linked bimodule when 𝒜 is unital. 

In their article [2], H. G. Dales and J. Duncan 

established some nice results about 

ℋ  2(𝒜, 𝑋) , where 𝒜 = ℓ 1(𝑆),  the 

semigroup algebra of S for some certain 

semigroups 𝑆 such as 𝑆 = ℤ+. Indeed, it was 

proved that ℋ  2(𝒜, 𝒜∗) = {0}  for 𝒜 =

ℓ 1(𝑆) where 𝑆 = ℤ+. 

In [3], F. Gourdeau, A. Pourabbas, and M. 

White investigated the second–order 

cohomology group of certain semigroup 

algebras. They proved that 

ℋ  2(ℓ 1(𝑆1), ℓ 1(𝑆1)∗) is a Banach space 

whenever 𝑆1 is any Rees semigroup with 

identity adjoined. 

Let 𝑆 be the semigroup 𝑇𝑛 =
{𝑒, 𝑎, 𝑎2, … , 𝑎𝑛−1, 𝑎𝑛 = 𝑜} for 𝑛 ∈ ℕ with 

𝑛 ≥ 2 . We use e for the identity of 𝑆 We note 

that 𝑇𝑛 is finite, commutative, 0-cancellative, 

𝑛𝑖𝑙 ♯-semigroup which was introduced in [4]. 

From now on we fix the notation 𝒜𝑛 for the 

semigroup algebra ℓ 1(𝑇𝑛). In this paper we 

shall reformulate the second order 

cohomology and cyclic cohomology groups 

ℋ  2(𝒜𝑛, 𝒜𝑛
∗ ) and ℋ𝒞  2(𝒜𝑛, 𝒜𝑛

∗ ) for the 

semigroup algebra 𝒜𝑛. 

In the next three sections, we recommend the 

reader to follow [1] for more information. 

2  Cohomology of algebras 

Let 𝒜 be an algebra, and let 𝑋 be an 𝒜-

bimodule. For 𝑛 ∈ ℕ , recall that an 𝑛-linear 

map 𝑇: 𝒜 𝑛 → 𝑋 is an 𝑛-cochain and that 

ℒ  𝑛(𝒜, 𝑋) is the space of 𝑛-linear maps from 

𝒜 × ⋯ × 𝒜 to 𝑋 .  

Definition 2.1  Let 𝑛 ∈ ℕ. We define the map 

𝛿  𝑛: ℒ  𝑛(𝒜, 𝑋) → ℒ  𝑛+1(𝒜, 𝑋) by the 

formula  

(𝛿  𝑛𝑇)(𝑎1, … , 𝑎𝑛+1) = 𝑎1 ⋅ 𝑇(𝑎2, … , 𝑎𝑛+1) 

+ ∑

𝑛

𝑘=1

(−1)𝑘𝑇(𝑎1, … , 𝑎𝑘−1, 𝑎𝑘𝑎𝑘+1, … , 𝑎𝑛+1) 

+(−1)𝑛+1𝑇(𝑎1, … , 𝑎𝑛) ⋅ 𝑎𝑛+1 ,       
(2.1) 

where 𝑎1, … , 𝑎𝑛+1 ∈ 𝒜 and 𝑇 ∈ ℒ𝑛(𝒜, 𝑋) . 

We also define 𝛿  0: 𝑋 → ℒ(𝒜, 𝑋) by 𝛿  0(𝑥) =
𝛿𝑥     (𝑥 ∈ 𝑋) .  

Take 𝑛 ∈ ℕ. Clearly 𝛿  𝑛𝑇 ∈ ℒ𝑛+1(𝒜, 𝑋) for 

each 𝑇 ∈ ℒ𝑛(𝒜, 𝑋) and each 𝛿  𝑛 is linear. It 

can be seen by a tedious calculations that 

𝛿  𝑛+1 ∘ 𝛿  𝑛 = 0 for all 𝑛 ∈ ℕ. An 𝑛-cochain 𝑇 

is an 𝑛-cocycle if 𝛿  𝑛𝑇 = 0 , and 𝑇 is an 𝑛-

coboundary if there is a linear map 𝑄 ∈

ℒ  𝑛−1(𝒜, 𝑋) such that 𝑇 = 𝛿  𝑛−1𝑄. The linear 

space of all 𝑛-cocycles is denoted by 

𝑍 𝑛(𝒜, 𝑋), and the linear space of all 𝑛-

coboundaries is denoted by 𝑁  𝑛(𝒜, 𝑋). Since 
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𝛿  𝑛 ∘ 𝛿  𝑛−1 = 0 for all 𝑛 ∈ ℕ, the space 

𝑁  𝑛(𝒜, 𝑋) is a subspace of 𝑍 𝑛(𝒜, 𝑋). 

Definition 2.2 The 𝑛𝑡ℎ-cohomology group of 

𝒜 with coefficients in 𝑋 is defined by  

𝐻 𝑛(𝒜, 𝑋) = 𝑍 𝑛(𝒜, 𝑋)/𝑁  𝑛(𝒜, 𝑋) . 

 In the additional case where 𝑛 = 0, we set  

𝑍 0(𝒜, 𝑋) = 𝑘𝑒𝑟 𝛿  0

= {𝑥 ∈ 𝑋: 𝑎 ⋅ 𝑥 = 𝑥 ⋅ 𝑎    (𝑎
∈ 𝒜)} 

and 𝐻 0(𝒜, 𝑋) = 𝑍 0(𝒜, 𝑋) . 

Given 𝑇 ∈ 𝑍 𝑛(𝒜, 𝑋) , we shall sometimes 

write [𝑇] for the element of 𝐻 𝑛(𝒜, 𝑋) 

determined by 𝑇 . 

For example, a linear map 𝐷 ∈ ℒ(𝒜, 𝑋) is 1-

cocycle if and only if it is a derivation and a 1-

coboundary if and only if it is inner. 

 

A map 𝑇 ∈ ℒ  2(𝒜, 𝑋)  is a 2-cocycle if and 

only if it satisfies the equation 

  

𝑎 ⋅ 𝑇(𝑏, 𝑐) − 𝑇(𝑎𝑏, 𝑐) + 𝑇(𝑎, 𝑏𝑐) −
𝑇(𝑎, 𝑏) ⋅ 𝑐 = 0    (𝑎, 𝑏, 𝑐 ∈ 𝒜) . (2.2) 

 

Now take a map 𝑄 ∈ ℒ(𝒜, 𝑋) . Then  

 

(𝛿  1𝑄)(𝑥, 𝑦) = 𝑥 ⋅ 𝑄(𝑦) − 𝑄(𝑥𝑦) +
𝑄(𝑥) ⋅ 𝑦    (𝑥, 𝑦 ∈ 𝒜) ,    (2.3) 

 

Clearly 𝛿  1𝑄 ∈ ℒ  2(𝒜, 𝑋) . Each such bilinear 

map 𝛿  1𝑄 is easily checked to be a 2-cocycle.  

3  Cohomology of Banach algebras 

Let 𝒜 be a Banach algebra, and let 𝑋 be a 

Banach 𝒜-bimodule. For 𝑇 ∈ ℬ 𝑛(𝒜, 𝑋), we 

have 𝛿𝑛𝑇 ∈ ℬ 𝑛+1(𝒜, 𝑋) and 

𝛿𝑛: ℬ 𝑛(𝒜, 𝑋) → ℬ 𝑛+1(𝒜, 𝑋) is a continuous 

linear map. 

An 𝑛-cochain 𝑇 is a continuous 𝑛-coboundary 

if there is a bounded linear map 𝑄 ∈

ℬ 𝑛(𝒜, 𝑋) such that 𝑇 = 𝛿  𝑛𝑄. The linear 

space of all continuous 𝑛-cocycles is denoted 

by 𝒵  𝑛(𝒜, 𝑋), and linear space of all 

continuous 𝑛-coboundaries is denoted by 

𝒩  𝑛(𝒜, 𝑋). Clearly 𝒵  𝑛(𝒜, 𝑋) is a closed 

subspace of ℬ 𝑛(𝒜, 𝑋) and 𝒩  𝑛(𝒜, 𝑋) is a 

subspace of 𝒵  𝑛(𝒜, 𝑋) ; it is not necessarily 

closed. 

 Definition 3.1 Let 𝒜 be a Banach algebra, 

and let 𝑋 be a Banach 𝒜-bimodule. Then the 

𝑛𝑡ℎ-cohomology group of 𝒜 with coefficients 

in 𝑋 is defined by  

ℋ  𝑛(𝒜, 𝑋) = 𝒵  𝑛(𝒜, 𝑋)/𝒩  𝑛(𝒜, 𝑋) . 

The space ℋ  𝑛(𝒜, 𝑋) is a semi-normed space 

for the quotient seminorm; it is a Banach space 

whenever 𝒩  𝑛(𝒜, 𝑋) is closed in ℬ 𝑛(𝒜, 𝑋). 

Definition 3.2 Let 𝒜 be a Banach algebra. A 

trace on 𝒜 is an element T of 𝒜∗ such that 

𝑇(𝑎𝑏) = 𝑇(𝑏𝑎) for all 𝑎, 𝑏 ∈ 𝒜. The set of 

all traces on 𝒜 is denoted by 𝒜𝑡𝑟. 

We set  

ℋ  0(𝒜, 𝑋) = 𝑘𝑒𝑟 𝛿  0 = {𝑥 ∈ 𝑋: 𝑎 ⋅ 𝑥 = 𝑥 ⋅
𝑎    (𝑎 ∈ 𝒜)} . 

It is clear that  

ℋ  0(𝒜, 𝒜∗) = 𝒜𝑡𝑟   .(3.1) 

 

Remark 3.3 We recall another notation: we 

define  

𝑁  2̃(𝒜, 𝑋) = 𝑁  2(𝒜, 𝑋) ∩ 𝒵  2(𝒜, 𝑋) , 

 and then we define  

𝐻 2̃(𝒜, 𝑋) = 𝒵  2(𝒜, 𝑋)/𝑁  2̃(𝒜, 𝑋) . 

Thus 𝐻 2(𝒜, 𝑋) = {0} means that, for each 

𝑇 ∈ 𝑍 2(𝒜, 𝑋) , there exists 𝑄 ∈ ℒ(𝒜, 𝑋) , 
not necessarily continuous, such that 𝑇 =

𝛿  1𝑄 , whereas ℋ  2(𝒜, 𝑋) = {0} means that, 

for each 𝑇 ∈ 𝒵  2(𝒜, 𝑋)  there exists a 

continuous linear map 𝑄 ∈ ℬ(𝒜, 𝑋)  such that 

𝑇 = 𝛿  1𝑄 . In contrast, 𝐻 2̃(𝒜, 𝑋) = {0} 
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means that, given 𝑇 ∈ 𝒵  2(𝒜, 𝑋) , there exists 

a linear map 𝑄 ∈ ℒ(𝒜, 𝑋)  such that 𝑇 =

𝛿  1𝑄 . In fact the vanishing of the continuous 

second-order cohomology implies that 

𝐻 2̃(𝒜, 𝑋) = {0} . In our initial cases, our 

algebra 𝒜 will be finite-dimensional, so that 

there is no difference between 𝐻 2(𝒜, 𝑋) , 

ℋ  2(𝒜, 𝑋) , and 𝐻 2̃(𝒜, 𝑋) .  

 

4  Cyclic cohomology of Banach algebras 

Let 𝒜 be a Banach algebra, and let 𝒜∗ be its 

dual bimodule. Take 𝑛 ∈ ℕ . An 𝑛-cochain 

𝑇 ∈ ℬ 𝑛(𝒜, 𝒜∗) is cyclic if it satisfies the 

equation:  

 

𝑇(𝑎1, … , 𝑎𝑛)(𝑎0) =
(−1)𝑛𝑇(𝑎0, 𝑎1, … , 𝑎𝑛−1)(𝑎𝑛)   (4.1) 

whenever 𝑎0, 𝑎1, … , 𝑎𝑛 ∈ 𝒜. 

For example, a linear map 𝑇: 𝒜 → 𝒜∗ is 

cyclic if 𝑇(𝑏)(𝑎) = (−1)𝑇(𝑎)(𝑏) for all 

𝑎, 𝑏 ∈ 𝒜 ; in other words,  

⟨𝑎, 𝑇(𝑏)⟩ + ⟨𝑏, 𝑇(𝑎)⟩ = 0    (𝑎, 𝑏 ∈
𝒜) .     (4.2) 

In particular,  

⟨𝑎, 𝑇(𝑎)⟩ = 0    (𝑎 ∈ 𝒜) ,    (4.3) 

  

and this condition is sufficient to ensure that 𝑇 

is cyclic. 

A bounded bilinear 2-cochain 𝑇: 𝒜 × 𝒜 →
𝒜∗ is cyclic if  

⟨𝑎, 𝑇(𝑏, 𝑐)⟩ = ⟨𝑐, 𝑇(𝑎, 𝑏)⟩    (𝑎, 𝑏, 𝑐 ∈
𝒜) .   (4.4) 

The linear space of all cyclic 𝑛-cochains is 

denoted by 𝒞𝒞  𝑛(𝒜) for 𝑛 ≥ 1 , and we set 

𝒞𝒞  0(𝒜) = 𝒜∗ . 

It can be seen that the map 𝛿  𝑛 maps a cyclic 

𝑛-cochain to a cyclic one for 𝑛 ≥ 0 (see for 

example page 450 in [5]), so that the cyclic 𝑛-

cochains 𝒞𝒞  𝑛((𝒜), 𝛿  𝑛) form a subcomplex 

of ℬ 𝑛((𝒜, 𝒜∗), 𝛿  𝑛) and the differentials of 

this complex or its coboundaries are denoted 

by  

𝛿𝑐  𝑛: 𝒞𝒞  𝑛(𝒜) → 𝒞𝒞  𝑛+1(𝒜) 

 for 𝑛 ≥ 0 .  

Definition 4.1  

The space of all bounded, cyclic 𝑛-cocycles is 

denoted by 𝒵𝒞  𝑛(𝒜, 𝒜∗), and the subspace 

consisting of maps 𝛿  𝑛−1𝑄 , where 𝑄 is a 

bounded, cyclic (𝑛 − 1)-cocycle, is denoted 

by 𝒩𝒞  𝑛(𝒜, 𝒜∗) . Then the continuous 𝑛𝑡ℎ-

cyclic cohomology group is defined by  

ℋ𝒞  𝑛(𝒜, 𝒜∗) = 𝒵𝒞  𝑛(𝒜, 𝒜∗)
/𝒩𝒞  𝑛(𝒜, 𝒜∗). 

We take ℋ𝒞  0(𝒜, 𝒜∗) to be ℋ  0(𝒜, 𝒜∗) .  

By (3.1) , we see that ℋ𝒞  0(𝒜, 𝒜∗) = 𝒜𝑡𝑟 . 

In particular, the space of all bounded, cyclic 

derivations from 𝒜 to 𝒜∗ is denoted by 

𝒵𝒞  1(𝒜, 𝒜∗), and the set of all cyclic inner 

derivations from 𝒜 to 𝒜∗ is denoted by 

𝒩𝒞  1(𝒜, 𝒜∗). It can be seen that every inner 

derivation is cyclic, and so 𝒩𝒞  1(𝒜, 𝒜∗) =

𝒩  1(𝒜, 𝒜∗). The first-order cyclic 

cohomology group is defined by 

ℋ𝒞  1(𝒜, 𝒜∗) = 𝒵𝒞  1(𝒜, 𝒜∗)

/𝒩𝒞  1(𝒜, 𝒜∗)

= 𝒵𝒞  1(𝒜, 𝒜∗)

/𝒩  1(𝒜, 𝒜∗) . 

Again, for example, to say that the second-

order cyclic cohomology, ℋ𝒞  2(𝒜, 𝒜∗) =
{0}, means that every bounded, cyclic 2-

cocycle bilinear map 𝑇: 𝒜 × 𝒜 → 𝒜∗ has the 

form 𝛿  1𝑄 , where 𝑄: 𝒜 → 𝒜∗ is a bounded 

linear map such that 

⟨𝑎, 𝑄(𝑎)⟩ = 0    (𝑎 ∈ 𝒜) . 

In the following example, we shall show that 

ℋ  2(𝒜𝑛, 𝒜𝑛
∗ ) ≠ {0}. 

Example 4.2 Consider the semigroup 𝑇𝑛 =
{𝑒, 𝑎, 𝑎2, … , 𝑎𝑛−1, 𝑎𝑛 = 𝑜} . Again, set 𝒜𝑛 =

ℓ 1(𝑇𝑛), so that 𝒜𝑛
∗ = ℓ ∞(𝑇𝑛). 
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Take 𝑛 = 2 , and define the map 𝑇: 𝒜2 ×
𝒜2 → 𝒜2

∗  by  

⟨𝛿𝑧, 𝑇(𝛿𝑥 , 𝛿𝑦)⟩ =

{
1 𝑖𝑓𝑥 = 𝑦 = 𝑧 = 𝑎
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

     (4.5) 

Then we claim that 𝑇 is a 2-cocycle but not a 

2-coboundary. 

First the map 𝑇 must satisfy the equation:  

𝑥 ⋅ 𝑇(𝑦, 𝑧) − 𝑇(𝑥𝑦, 𝑧) + 𝑇(𝑥, 𝑦𝑧) −
𝑇(𝑥, 𝑦) ⋅ 𝑧 = 0    (𝑥, 𝑦, 𝑧 ∈ 𝒜2) .    (4.6) 

Since ⟨𝛿𝑎 , 𝑇(𝛿𝑎 , 𝛿𝑎)⟩ = 1 , we see that 

𝑇(𝛿𝑎 , 𝛿𝑎) = 𝛿𝑎
∗ and 𝑇(𝛿𝑝, 𝛿𝑞) = 0 for all 

other 𝑝, 𝑞 ∈ 𝑇2  . We need to prove that  

𝛿𝑝 ⋅ 𝑇(𝛿𝑞 , 𝛿𝑟) − 𝑇(𝛿𝑝𝑞 , 𝛿𝑟) +

𝑇(𝛿𝑝, 𝛿𝑞𝑟) − 𝑇(𝛿𝑝 , 𝛿𝑞) ⋅ 𝛿𝑟 = 0   (4.7) 

 for all 𝑝, 𝑞, 𝑟 ∈ 𝑇2 . 

All four elements are zero unless at least one 

of the pairs (𝑞, 𝑟) , (𝑝𝑞, 𝑟) , (𝑝, 𝑞𝑟) , and (𝑝, 𝑞) 

is the pair (𝑎, 𝑎) . Thus, there are four cases to 

be discussed: 

Case1: Suppose that 𝑞 = 𝑟 = 𝑎 . The L. H. S. 

of (4.7) will be equal to 

𝛿𝑝 ⋅ 𝛿𝑎
∗ − 𝑇(𝛿𝑝𝑎 , 𝛿𝑎) + 𝑇(𝛿𝑝 , 𝛿𝑎2)

− 𝑇(𝛿𝑝 , 𝛿𝑎) ⋅ 𝛿𝑎  . 

 

If 𝑝 = 𝑒 , the first two terms of (4.7) are 𝛿𝑎
∗ −

𝛿𝑎
∗ and the last are zero, so (4.7) is satisfied. 

If 𝑝 = 𝑎 , the terms of (4.7) are 𝛿𝑒
∗ − 0 + 0 −

𝛿𝑒
∗ , so (3.8) is satisfied. Lastly, if 𝑝 ≠ 𝑎 or 𝑒 , 

then all four terms are zero and (4.7) is 

satisfied. 

 

Case2: Suppose that 𝑝𝑞 = 𝑟 = 𝑎 but (𝑞, 𝑟) ≠
(𝑎, 𝑎) , so that we have 𝑞 = 𝑒 and 𝑝 = 𝑎 . The 

terms of (4.7) are 𝛿𝑒
∗ − 0 + 0 − 𝛿𝑒

∗ , and (4.7) 

is satisfied. 

 

Case3: Suppose that 𝑝 = 𝑞𝑟 = 𝑎 but 

(𝑝𝑞, 𝑟) ≠ (𝑎, 𝑎) . Then 𝑝 = 𝑞 = 𝑎 and 𝑟 = 𝑒 

. The terms of (4.7) are 𝛿𝑒
∗ − 0 + 0 − 𝛿𝑒

∗ , so 

(4.7) is satisfied. 

Case4: If 𝑝 = 𝑞 = 𝑎 , we can assume that 𝑟 ≠
𝑒 or we are in Case3; all four terms of (4.7) are 

zero unless 𝑟 = 𝑎 in which case we are back 

to Case1. Thus 𝑇 is a 2-cocycle map. 

To prove that 𝑇 is not a coboundary, suppose 

that 𝑇 = 𝛿  1𝑄 for some bounded linear map 

𝑄: 𝒜2 → 𝒜2
∗  . So from (4.5), we have  

 

0 = 𝑇(𝛿𝑜, 𝛿𝑜) = 𝛿  1𝑄(𝛿𝑜, 𝛿𝑜)

= 𝛿𝑜 ⋅ 𝑄(𝛿𝑜) − 𝑄(𝛿𝑜)
+ 𝑄(𝛿𝑜) ⋅ 𝛿𝑜

= 2𝛿𝑜 ⋅ 𝑄(𝛿𝑜) − 𝑄(𝛿𝑜) . 

However, the map 𝒜2
∗ → 𝒜2

∗  such that 𝑦 ⟼

𝛿𝑜 ⋅ 𝑦 (sending 𝛿𝑥
∗ to 0 if 𝑥 ≠ 𝑜 , and 𝛿𝑜

∗ +

𝛿𝑒
∗ + 𝛿𝑎

∗ if 𝑥 = 𝑜 ) does not have 
1

2
 as an 

eigenvalue. The only solution of the equation 

2𝛿𝑜 ⋅ 𝑄(𝛿𝑜) = 𝑄(𝛿𝑜) is 𝑄(𝛿𝑜) = 0 . Thus 

𝑄(𝛿𝑜) = 0 . 

Likewise,  

0 = 𝑇(𝛿𝑜 , 𝛿𝑎) = 𝛿  1𝑄(𝛿𝑜, 𝛿𝑎)

= 𝛿𝑜 ⋅ 𝑄(𝛿𝑎) − 𝑄(𝛿𝑜)
+ 𝑄(𝛿𝑜) ⋅ 𝛿𝑎 = 𝛿𝑜 ⋅ 𝑄(𝛿𝑎) . 

 

So 𝛿𝑜 ⋅ 𝑄(𝛿𝑎) = 0 , in particular 

⟨𝑄(𝛿𝑎), 𝛿𝑜⟩ = ⟨𝛿𝑜 ⋅ 𝑄(𝛿𝑎), 𝛿𝑜⟩ = 0 

Finally we have  

1 = ⟨𝛿𝑎 , 𝑇(𝛿𝑎 , 𝛿𝑎)⟩ = ⟨𝛿𝑎 , 𝛿  1𝑄(𝛿𝑎 , 𝛿𝑎)⟩

= ⟨𝛿𝑎 , 𝛿𝑎 ⋅ 𝑄(𝛿𝑎) − 𝑄(𝛿𝑜)
+ 𝑄(𝛿𝑎) ⋅ 𝛿𝑎⟩ 

 = 2⟨𝛿𝑜, 𝑄(𝛿𝑎)⟩ −
⟨𝛿𝑎 , 𝑄(𝛿𝑜)⟩ = 0, 

which is a contradiction. Thus 𝑇 is not a 2-

coboundary. 

It is interesting to look at the case of this 

example in general. We define the map 

𝑇: 𝒜𝑛 × 𝒜𝑛 → 𝒜𝑛
∗  by  
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𝑇(𝛿𝑝, 𝛿𝑞) = {
0 𝑖𝑓(𝑝, 𝑞) ≠ (𝑎, 𝑎)

𝛿𝑎
∗ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

    

(4.8) 

Then we claim that 𝑇 is a 2-cocycle but 𝑇 is a 

2-coboundary for 𝑛 ≥ 3. 

The map 𝑇 is a 2-cocycle because in the 

following equation: 

 𝛿𝑝 ⋅ 𝑇(𝛿𝑞 , 𝛿𝑟) − 𝑇(𝛿𝑝𝑞 , 𝛿𝑟) + 𝑇(𝛿𝑝 , 𝛿𝑞𝑟) −

𝑇(𝛿𝑝, 𝛿𝑞) ⋅ 𝛿𝑟 = 0    (𝑝, 𝑞, 𝑟 ∈ 𝑇𝑛) ;   (4.9)

 (3.10) 

we see that all four terms in (4.9) , are zero 

unless at least one of the pairs (𝑞, 𝑟) , (𝑝𝑞, 𝑟) 

, (𝑝, 𝑞𝑟) , and (𝑝, 𝑞) is the pair (𝑎, 𝑎) . Thus a 

similar discussing for the above four cases 

can be done to prove that 𝑇 is a 2-cocycle. 

To see that 𝑇 is a 2-coboundary, let’s seek a 

map 𝑄: 𝒜𝑛 → 𝒜𝑛
∗  such that 𝑇 = 𝛿  1𝑄 . 

From the equation (4.5) , we have  

0 = 𝑇(𝛿𝑜, 𝛿𝑜) = 𝛿  1𝑄(𝛿𝑜, 𝛿𝑜)
= 𝛿𝑜 ⋅ 𝑄(𝛿𝑜) − 𝑄(𝛿𝑜)

+ 𝑄(𝛿𝑜) ⋅ 𝛿𝑜

= 2𝛿𝑜 ⋅ 𝑄(𝛿𝑜) − 𝑄(𝛿𝑜) . 

However, the map 𝒜𝑛
∗ → 𝒜𝑛

∗  such that 𝑦 ⟼
𝛿𝑜 ⋅ 𝑦 (sending 𝛿𝑥

∗ to 0 if 𝑥 ≠ 𝑜 , and 𝛿𝑜
∗ +

𝛿𝑒
∗ + 𝛿𝑎

∗ + ⋯ + 𝛿𝑎𝑛−1
∗  if 𝑥 = 𝑜 ) does not have 

1

2
 as an eigenvalue. The only solution of the 

equation 2𝛿𝑜 ⋅ 𝑄(𝛿𝑜) = 𝑄(𝛿𝑜) is 𝑄(𝛿𝑜) = 0 . 

Thus 𝑄(𝛿𝑜) = 0 . 

Also we have 

 0 = 𝑇(𝛿𝑒 , 𝛿𝑒) = 𝛿𝑒 ⋅ 𝑄(𝛿𝑒) − 𝑄(𝛿𝑒) +
𝑄(𝛿𝑒) ⋅ 𝛿𝑒 = 𝑄(𝛿𝑒) , so 𝑄(𝛿𝑒) = 0 . 

Also we have 

 0 = 𝑇(𝛿𝑜, 𝛿𝑎) = 𝛿𝑜 ⋅ 𝑄(𝛿𝑎) − 𝑄(𝛿𝑜) +
𝑄(𝛿𝑜) ⋅ 𝛿𝑎 , so 𝛿𝑜 ⋅ 𝑄(𝛿𝑎) = 0 . 

Suppose that 𝑄(𝛿𝑎) = 𝜆0𝛿𝑒
∗ + 𝜆1𝛿𝑎

∗ + ⋯ +
𝜆𝑛−1𝛿𝑎𝑛−1

∗  . 

We see that  

𝛿𝑎
∗ = 𝑇(𝛿𝑎 , 𝛿𝑎) = 2𝛿𝑎 ⋅ 𝑄(𝛿𝑎) − 𝑄(𝛿𝑎2)

= 2(𝜆1𝛿𝑒
∗ + 𝜆2𝛿𝑎

∗ + ⋯
+ 𝜆𝑛−1𝛿𝑎𝑛−2

∗ ) − 𝑄(𝛿𝑎2) , 

hence  

𝑄(𝛿𝑎2) = 2(𝜆1𝛿𝑒
∗ + 𝜆2𝛿𝑎

∗ + ⋯ + 𝜆𝑛−1𝛿𝑎𝑛−2
∗ )

− 𝛿𝑎
∗

= 2𝜆1𝛿𝑒
∗ + (2𝜆2 − 1)𝛿𝑎

∗

+ ⋯ + 2𝜆𝑛−1𝛿𝑎𝑛−2
∗  . 

Similarly, We see that  

 

0 = 𝑇(𝛿𝑎 , 𝛿𝑎2) = 𝛿𝑎 ⋅ 𝑄(𝛿𝑎2) − 𝑄(𝛿𝑎3)

+ 𝑄(𝛿𝑎) ⋅ 𝛿𝑎2 

= (2𝜆2 − 1)𝛿𝑒
∗ + 2𝜆3𝛿𝑎

∗ + ⋯ + 2𝜆𝑛−1𝛿𝑎𝑛−3
∗  

−𝑄(𝛿𝑎3) + 𝜆2𝛿𝑒
∗ + 𝜆3𝛿𝑎

∗ + ⋯ + 𝜆𝑛−1𝛿𝑎𝑛−3
∗  

hence  

𝑄(𝛿𝑎3) = (3𝜆2 − 1)𝛿𝑒
∗ + 3𝜆3𝛿𝑎

∗ + ⋯

+ 3𝜆𝑛−1𝛿𝑎𝑛−3
∗  . 

Also we see that  

0 = 𝑇(𝛿𝑎 , 𝛿𝑎3) = 𝛿𝑎 ⋅ 𝑄(𝛿𝑎3) − 𝑄(𝛿𝑎4)

+ 𝑄(𝛿𝑎) ⋅ 𝛿𝑎3 

= 3𝜆3𝛿𝑒
∗ + 3𝜆4𝛿𝑎

∗ + ⋯ + 3𝜆𝑛−1𝛿𝑎𝑛−4
∗  

−𝑄(𝛿𝑎4) + 𝜆3𝛿𝑒
∗ + 𝜆4𝛿𝑎

∗ + ⋯ + 𝜆𝑛−1𝛿𝑎𝑛−4
∗  

hence  

𝑄(𝛿𝑎4) = 4(𝜆3𝛿𝑒
∗ + 𝜆4𝛿𝑎

∗ + ⋯

+ 𝜆𝑛−1𝛿𝑎𝑛−4
∗ ) . 

A pattern emerge, let’s look at the example 

when 𝑛 = 3 when we know that 𝑄(𝛿𝑎3) = 0 

so we must have 𝜆2 =
1

3
 and the map 𝑇 is a 2-

coboundary for any map 𝑄: 𝒜3 → 𝒜3
∗  such 

that 𝑇 = 𝛿  1𝑄 and 𝑄(𝛿𝑜) = 𝑄(𝛿𝑒) = 0  , 

𝑄(𝛿𝑎) = 𝜆𝑜𝛿𝑒
∗ + 𝜆1𝛿𝑎

∗ +
1

3
𝛿𝑎2

∗   , 𝑄(𝛿𝑎2) =

2𝜆1𝛿𝑒
∗ −

1

3
𝛿𝑎

∗ and 𝑄(𝛿𝑎3) = 0 where 𝜆0, 𝜆1 ∈

ℂ . 

Therefore, the map 𝑇 can not be a 

counterexample when 𝑛 = 3 . 
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In general, by looking at 𝑄(𝛿𝑎𝑘) = 0 for all 

𝑘 ≥ 3, we must have that 𝑄(𝛿𝑎𝑛) = 0 ; that is 

𝑛𝜆𝑛−1𝛿𝑒
∗ = 0 so 𝜆𝑛−1 = 0 so that the map 𝑇 

is not a counterexample when 𝑛 ≥ 3 . 

5  The main result 
In this section we end with our main result, 

where we shall reformulate the second order 

cohomology and cyclic cohomology groups 

ℋ  2(𝒜𝑛, 𝒜𝑛
∗ ) and ℋ𝒞  2(𝒜𝑛, 𝒜𝑛

∗ ) of the 

commutative semigroup algebra 𝒜𝑛 as 

defined above. 

For 𝑛 ∈ ℕ and from the definition of the map 

𝛿  𝑛 in (2.1), we form the map 

𝛿  1: ℬ 1(𝒜𝑛, 𝒜𝑛
∗ ) → ℬ 2(𝒜𝑛, 𝒜𝑛

∗ ) such that 

for each 𝑇: 𝒜𝑛 → 𝒜𝑛
∗  ,  

we have  

(𝛿  1𝑇)(𝑎, 𝑏) = 𝑎 ⋅ 𝑇(𝑏) − 𝑇(𝑎𝑏) + 𝑇(𝑎)
⋅ 𝑏    (𝑎, 𝑏) ∈ 𝒜𝑛 . 

Also, we form the map 𝛿  2: ℬ 2(𝒜𝑛, 𝒜𝑛
∗ ) →

ℬ 3(𝒜𝑛, 𝒜𝑛
∗ ) such that for each 𝑇: 𝒜𝑛 ×

𝒜𝑛 → 𝒜𝑛
∗  , we have 

(𝛿  2𝑇)(𝑎, 𝑏, 𝑐) = 𝑎 ⋅ 𝑇(𝑏, 𝑐) − 𝑇(𝑎𝑏, 𝑐)
+ 𝑇(𝑎, 𝑏𝑐) − 𝑇(𝑎, 𝑏)
⋅ 𝑐    (𝑎, 𝑏, 𝑐) ∈ 𝒜𝑛 . 

It can be shown that 𝛿  2 ∘ 𝛿  1 = 0 , so we can 

reform the second order cohomology 

ℋ  2(𝒜𝑛, 𝒜𝑛
∗ ) as the following:  

ℋ  2(𝒜𝑛, 𝒜𝑛
∗ ) = 𝑘𝑒𝑟 𝛿  2/𝑖𝑚 𝛿  1 . 

The cyclic elements of the space 

𝒞𝒞  1(𝒜𝑛, 𝒜𝑛
∗ ) are the bounded linear maps 

𝑇: 𝒜𝑛 → 𝒜𝑛
∗  such that  

⟨𝑏, 𝑇(𝑎)⟩ = −⟨𝑎, 𝑇(𝑏)⟩    (𝑎, 𝑏 ∈ 𝒜𝑛) . 

Also the cyclic elements of the space 

𝒞𝒞  2(𝒜𝑛, 𝒜𝑛
∗ ) are the bounded bilinear maps 

𝑇: 𝒜𝑛 × 𝒜𝑛 → 𝒜𝑛
∗  such that  

⟨𝑐, 𝑇(𝑎, 𝑏)⟩ = ⟨𝑎, 𝑇(𝑏, 𝑐)⟩    (𝑎, 𝑏, 𝑐 ∈ 𝒜𝑛) . 

The map 𝛿  1 maps 𝒞𝒞  1(𝒜𝑛, 𝒜𝑛
∗ ) into 

𝒞𝒞  2(𝒜𝑛, 𝒜𝑛
∗ ) .  

To see that, take 𝑇 ∈ 𝒞𝒞  1(𝒜𝑛, 𝒜𝑛
∗ ) , then for 

each 𝑎, 𝑏, 𝑐 ∈ 𝒜𝑛 , we have  

 

⟨𝑐, 𝑇(𝑎, 𝑏)⟩ − ⟨𝑎, 𝑇(𝑏, 𝑐)⟩

= ⟨𝑐, 𝑎 ⋅ 𝑇(𝑏) − 𝑇(𝑎𝑏)
+ 𝑇(𝑎) ⋅ 𝑎⟩

− ⟨𝑎, 𝑏 ⋅ 𝑇(𝑐) − 𝑇(𝑏𝑐)
+ 𝑇(𝑏) ⋅ 𝑐⟩ 

= ⟨𝑐𝑎, 𝑇(𝑏)⟩ − ⟨𝑐, 𝑇(𝑎𝑏)⟩ + ⟨𝑏𝑐, 𝑇(𝑎)⟩

− ⟨𝑎𝑏, 𝑇(𝑐)⟩ + ⟨𝑎, 𝑇(𝑏𝑐)⟩ 

−⟨𝑐𝑎, 𝑇(𝑏)⟩ 

= (⟨𝑏𝑐, 𝑇(𝑎)⟩ + ⟨𝑎, 𝑇(𝑏𝑐)⟩)

− (⟨𝑐, 𝑇(𝑎𝑏)⟩ + ⟨𝑎𝑏, 𝑇(𝑐)⟩)

= 0 . 

 

Therefore, We can reform the second order 

cyclic cohomology ℋ𝒞  2(𝒜𝑛, 𝒜𝑛
∗ ) as the 

following:  

ℋ𝒞  2(𝒜𝑛, 𝒜𝑛
∗ ) = 𝑘𝑒𝑟 𝛿  2

∩ 𝒞𝒞  2(𝒜𝑛, 𝒜𝑛
∗ )

/𝛿  1(𝒞𝒞  1(𝒜𝑛, 𝒜𝑛
∗ )) . 

 

Finally, we conclude with our main result as 

presented in the following theorem: 

 

Theorem 5.1  Let 𝒜𝑛 = ℓ 1(𝑇𝑛), where 𝑛 ≥
2 . Then  

 

ℋ  2(𝒜𝑛, 𝒜𝑛
∗ ) = 𝑘𝑒𝑟 𝛿  2/𝑖𝑚 𝛿  1 . 

and 

ℋ𝒞  2(𝒜𝑛, 𝒜𝑛
∗ ) = 𝑘𝑒𝑟 𝛿  2

∩ 𝒞𝒞  2(𝒜𝑛, 𝒜𝑛
∗ )

/𝛿  1(𝒞𝒞  1(𝒜𝑛, 𝒜𝑛
∗ )) . ∎ 
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